
TrilobiteG: A programming architecture
for autonomous underwater vehicles

Hans Christian Woithe Ulrich Kremer
Rutgers University

{hcwoithe,uli}@cs.rutgers.edu

Abstract
Programming autonomous systems can be challenging because
many programming decisions must be made in real time and un-
der stressful conditions, such as on a battle field, during a short
communication window, or during a storm at sea. As such, new
programming designs are needed to reflect these specific and ex-
treme challenges.

TrilobiteG is a programming architecture for buoyancy-driven
autonomous underwater vehicles (AUVs), called gliders. Gliders
are designed to spend weeks to months in the ocean, where they
operate fully autonomously while submerged and can only com-
municate via satellite during their limited time at the surface. Based
on the experience gained from a seven year long collaboration with
two oceanographic institutes, the TrilobiteG architecture has been
developed with the main goal of enabling users to run more ef-
fective missions. The TrilobiteG programming environment con-
sists of a domain-specific language called ALGAE, a lower level
service layer, and a set of real-time and faster-than-real-time sim-
ulators. The system has been used to program novel and robust
glider behaviors, as well as to find software problems that other-
wise may have remained undetected, with potentially catastrophic
results. We believe that TrilobiteG can serve as a blueprint for other
autonomous systems as well, and that TrilobiteG will motivate and
enable a broader scientific community to work on extreme, real-
world problems by using the simulation infrastructure.

Categories and Subject Descriptors D.2.1 [Requirements/Spec-
ifications]: Languages; D.2.11 [Software Architectures]: Domain-
specific architectures, Languages; D.3.2 [Language Classifica-
tions]: Multiparadigm languages, Specialized application lan-
guages

1. Introduction
Programming is typically thought of as an activity done by a person
in a controlled environment such as an air-conditioned office space,
or perhaps in the relaxed environment of a cafe. We typically do
not imagine a programmer trying to reprogram or debug a program
under extreme conditions, such as on the battle field, exposed to the
elements during a disaster response operation, or in a boat that rolls

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LCTES ’15, June 18–19, 2015, Portland, OR, USA.
Copyright c� 2015 ACM 978-1-4503-3257-6//. . . $15.00.
http://dx.doi.org/10.1145/2670529.2754971

and pitches while deploying a scientific instrument. Programmers
in situations like these also experience hardships that may result
in additional stressors, like sleep deprivation due to the length of
a particular mission. We cannot expect programmers to maintain a
high level of performance under these conditions. In addition, the
system that needs to be retasked or debugged is itself exposed to
an extreme environment and requires attention in real time. Once
the retasking or bug fix is done, the system will have to work fully
autonomously without the option of any further interactions, at least
for some period of time. This means that any mistakes may have
severe consequences, including the total loss of the system.

Autonomous underwater vehicles (AUVs), terrestrial robots,
aerial drones, space probes, and satellites are examples of au-
tonomous systems that need to be programmed in extreme condi-
tions. These systems have a common set of characteristics indepen-
dent of their particular application domain that should be reflected
in the design and implementation of the programming architecture
if it wants to be successful, both in terms of functionality as well
as acceptance in the user community. These characteristics include:
(a) the need for functionality and resource tradeoffs; (b) teams of
users with varying expertise; and (c) real-time decision making.
As such, missions have to be designed with resource constraints
in mind. Users may also have to collaborate to achieve complex
mission goals due to the complexity of the programming and oper-
ational tasks. Furthermore, autonomous systems may be deployed
in hostile and dangerous environments where decisions are often
time and mission critical.

In this paper, we discuss the design, implementation, and pre-
liminary evaluation of TrilobiteG

1, a programming architecture for
buoyancy-driven autonomous underwater vehicles, called gliders.
Gliders are designed to spend weeks to months in the ocean, op-
erating fully autonomously while submerged, and with interactions
only possible via satellite communication during their time at the
surface. There are three main reasons why we picked the domain of
AUVs as our representative example for an extreme programming
environment. First, developing and managing AUV deployments
have all the characteristics of an extreme programming environ-
ment. Therefore solutions in this domain will have direct impact
on other extreme domains as well. Second, AUVs are an important
application domain. AUVs have revolutionized the way marine sci-
entists and oceanographers collect data and gain knowledge about
the world’s oceans. However, these autonomous systems are still far
from being tools that scientists can use “off the shelf.” TrilobiteG

will enable oceanographers to utilize their AUVs more effectively.
Third, we have substantial knowledge and expertise in the domain
of AUVs due to close interactions and collaborations with oceanog-

1 The trilobites were among the most successful and resilient of all early
animals, roaming the oceans for over 270 million years. The ‘G’ identifies
the glider version.

raphers, marine scientists, marine engineers, and AUV pilots, par-
ticularly at two major oceanographic research institutes: the Mon-
terey Bay Aquarium Research Institute (MBARI) and the Institute
for Marine and Coastal Science at Rutgers (IMCS). The main con-
tributions of this work are:

1. The description of the design and implementation of TrilobiteG,
a realistic programming architecture for the Slocum Glider
AUV. Over 35 oceanographic research groups operate the
Slocum Glider world wide, with the U.S. Navy operating 150
gliders alone. The TrilobiteG architecture includes a high-level,
domain-specific language ALGAE (AUV Language for Greater
Adaptability and Energy Optimization) and a service oriented
programming layer at the lower level, together with their com-
piler, runtime system, and simulators.

2. The evaluation of TrilobiteG through simulation and field de-
ployments off the coast of New Jersey. The experimental results
indicate the expressiveness and effectiveness of TrilobiteG and
its components.

3. The development of a web interface for the TrilobiteG simu-
lation environment, which will allow oceanographers and other
scientists to explore different aspects of glider mission planning
and implementation. We hope that this will spark interest in
the broader research community in developing new algorithms
for glider operations and mission designs for AUVs, as well as
other extreme programming domains.

To the best or our knowledge, TrilobiteG is the first program-
ming architecture for autonomous systems where dealing with un-
certainty and extreme conditions is the key design principle across
the entire programming architecture. It allows performance and en-
ergy tradeoffs to be expressed and validated through simulation and
on-board measurements. By making the simulation environment
public, others will be able to conduct research in this important ap-
plication domain without the significant capital and operation costs
of actual AUVs.

The paper is organized as follows. After a discussion of related
work, we will introduce the Slocum Glider which is the main
target of TrilobiteG. The TrilobiteG programming architecture is
discussed in Section 4, followed by a description of its simulation
environment. Section 6 presents experimental results. The paper
concludes with a summary and future work.

2. Related Work
Historically, robot manufacturers provided proprietary approaches
to programming robots, i.e., one of a kind solutions for program-
ming their particular robots and their specialized applications.
More recently, there have been efforts to standardize program-
ming environments for a larger class of robots, with some focused
on education. For example, RobotC [5] is an extension of the C
programming language that defines interfaces to deal with motors,
sensors, and relays as they are used in robotic systems. It is mainly
designed as a tool to introduce students to robot programming. The
Robot Operating System (ROS) [29] is a set of software libraries
and tools for developing software for a wide variety of robotic plat-
forms. Finally, National Instruments LabView Robotics [23] is a
set of tools to provide a standardized hardware and software de-
velopment platform for a wide range of autonomous systems and
robots.

The above systems are rather general and mostly provide lower
level abstractions for robotic system sensing and actuation. In order
to address the particular needs of marine robots, researchers have
developed specialized programming systems to support different
aspects of AUVs and their operation.

MOOS-IvP is a set of open source tools that provide autonomy
for unmanned marine vehicles [4]. It is composed of two distinct
components, the Mission Oriented Operating Suite (MOOS) and
the IvP Helm. MOOS provides a publish-subscribe architecture and
protocol where processes communicate through a single database
in a star topology. The IvP Helm, short for interval programming,
is one such process in MOOS and uses a behavior based architec-
ture to implement autonomy. The MOOS-IvP mission specification
can become quite complex when considering the interactions of be-
haviors, mission modes, the generation of objective functions, the
weights of the objective functions, and how the solver will resolve
these functions to produce a vehicle command.

The Autonomous Unmanned Vehicle Workbench (AUVW)
aims to bridge the gap between heterogeneous vehicles by provid-
ing a tool capable of mission planning, rehearsal and replay for
arbitrary air, ground, surface and underwater vehicles [8, 9]. A key
component of AUVW is the Extensible Markup Language (XML)-
based Autonomous Vehicle Control Language (AVCL) that pro-
vides a common data model. The common data format, along with a
set of utilities that perform automatic data conversion to and from a
vehicle specific format, serves as the bridging element between the
dissimilar vehicles. Besides AUVW, other mission planning tools
have also chosen to use an XML-based mission format [10, 11, 20].

The Common Control Language (CCL) has been developed
to investigate a standard for communicating between AUVs and
surface vehicles as well as human operators [13–16, 24, 27]. To
support groups of heterogeneous vehicles, a set of generic or ba-
sic behaviors are defined that are common among all AUVs. These
generic behaviors are categorized into nine broad classes. The focal
point thus far has been on the categories of maneuvering, navigat-
ing, communicating, configuring, executing, and monitoring. The
behaviors are used as basic building blocks for AUV interaction
and for mission files.

Although specialized for AUV operations, the systems de-
scribed are still rather general. They define low-level and inter-
mediate infrastructures that allow interactions between different
sensing and actuation activities, and support the collaboration of
AUVs with a wide range of capabilities. One of their main ob-
jectives is the standardization and software interoperability across
different platforms. The simulation support for these systems often
do not exist, or are rather limited.

In a world where energy efficiency and safety is crucial for ve-
hicle operations and survival, these systems address too many as-
pects (e.g., sensing, communication, and actuation) which makes
them too complex and hard to use for most oceanographers. The
TrilobiteG design is based on the philosophy that simplicity and en-
ergy awareness will lead to a more robust and easy to use program-
ming system. Simulation is also a key component used to build trust
into the infrastructure. Simulation allows for a more efficient oper-
ation by enabling oceanographers to make better tradeoff decisions
while designing a mission and during a mission. In addition, there
needs to be a separate support for the domain user (oceanographer)
and the services and utilities provider (pilot and vehicle engineer).
Both groups have different views of a mission with different exper-
tise that should be supported separately in order to build an overall
robust and effective system.

3. Slocum Glider
The Slocum Electric Glider shown in Figure 1 is a buoyancy-driven
AUV developed and produced by Teledyne Webb Research [37].
Other buoyancy driven vehicles include the Spray glider, [35] de-
veloped by the Scripps Institute of Oceanography at UC San Diego,
and University of Washington’s Seaglider [18]. Both vehicles are
commercially available through Bluefin Robotics and Kongsberg
Underwater Technology, respectively. More recent AUV designs

Figure 1. One of our Slocum Gliders equipped with a double
payload bay. The glider is 180 cm long and weighs around 70 kg.

have both a buoyancy engine and a propeller, such as MBARI’s
Tethys system [21] and a new version of the Slocum Glider. These
gliders have a foldable auxiliary propeller [6] that allow these hy-
brid AUVs to operate in glider (cruise) and propeller driven modes.

A stock Slocum Glider contains two 16 MHz computing plat-
forms [30], one for flight control and the other for the collection of
scientific data. As part of the ALGAE programming architecture,
the capabilities of the AUV have been extended with the integra-
tion of a Linux single board computer (AVBot). The software on
the glider’s computing platforms have also been retrofitted with a
scripting framework that allows for the execution of programs with-
out the need to flash new firmware.

The front of the Slocum Glider contains a buoyancy engine
which moves a piston to change its displacement of water, allowing
for vertical motion in the water column. The pitch of the glider can
be adjusted by moving an internal battery pack, thereby changing
its center of gravity. The AUV’s wings allow it to glide forward
through water to produce a saw-toothed flight profile inflecting
near the surface and at deeper depths. Using a rudder and GPS, the
vehicle is able to navigate and collect data samples using onboard
sensors. Satellite and radio communications are used at the surface
to transmit data and alter, if necessary, the AUV’s mission [33].
Gliders can be equipped with acoustic underwater communication
modems, but their practical range is limited (around 5 km).

The Slocum Glider, although slower than a propeller driven
vehicle with an approximate speed of 35 cm/sec, has the advantage
of having lower overall power requirements. The buoyancy engine
is required only during inflection points, which may be as shallow
as a few meters below the surface or as deep as 200 m for coastal
gliders, and up to 1 km for the deep water version. This produces
prolonged flights typically lasting four to six weeks [33] as opposed
to hours for propeller-driven vehicles.

Depending on the battery type, sensing, computing, and com-
munication activities, glider missions can last substantially longer.
In 2009, a Slocum Glider flew from New Jersey to Spain in 221
days, making it the first robot to cross the Atlantic Ocean [19].
This mission also demonstrated the danger of glider operations. An
attempt to cross the Atlantic a year earlier ended when the glider
was lost at sea after only few months into the mission.

4. The TrilobiteG Programming Architecture
TrilobiteG is a layered programming architecture for AUVs with
separate support for the domain user (oceanographer and pilot),
and the services and utilities provider (vehicle engineer). Both
groups have different views of a mission with different expertise
that should be supported separately in order to build an overall
robust and effective system. Since the safety of the vehicle is of
paramount concern, and since the real-time decision making capa-
bilities of the oceanographer and pilots may be somewhat compro-
mised, the programming abstractions at the higher level have to be
simple and geared towards avoiding unrecoverable mistakes.

Figure 2. Basic TrilobiteG programming architecture and opera-
tional overview. Simulators are not shown.

The programming abstractions in the higher level ALGAE lan-
guage follow the KISS (keep it simple, stupid) principle2. Where
possible, the complexity related to vehicle safety is pushed to the
lower level where sets of well-tested, predefined behaviors are im-
plemented.

Simulation has an important role in the layered TrilobiteG pro-
gramming architecture. Pilots can use simulation to make better
tradeoff decisions both before and during deployment. Simulation
has to take all aspects of autonomous system behavior into consid-
eration, including the health of the system itself, the sensing and
actuation activities, and resource consumption (particularly battery
energy).

Finally, we have observed specific habits and operational pro-
cedures in the oceanographers and pilots we have interacted with.
Like airline pilots and astronauts, they follow specific checklists
and procedures to ensure a safe and successful mission. In order to
make TrilobiteG acceptable and trustworthy within the AUV com-
munity, we incorporated as many existing safety features and pro-
cedures as possible into the programming architecture.

4.1 Overview
Figure 2 shows the basic TrilobiteG programming infrastructure
and the operational framework for the target glider system. Dif-
ferent on-shore and at-sea architecture components have to work
together in order to make vehicle operations safe and effective. To
make full use of all of TrilobiteG’s components, a modified glider
must be used. The stock/legacy glider has a flight control computer
that determines sensing and actuation activities every four seconds
through a layered control behavior stack. Our modified gliders are
equipped with energy efficient general purpose programming plat-
forms called AVBot. In addition, they have been retrofitted with
the necessary hardware and software to allow glider activities to
be monitored and controlled by programs running on AVBot. In
other words, the target computing platform consists of a lower level
flight controller, primarily used to run basic vehicle specific safety
software, and a general purpose system that executes higher level
mission specific tasks.

2 The KISS principle has been attributed to Kelly Johnson, a former lead
engineer at the Lockheed Skunk Works. One of Johnson’s goal was to
enable a team of average mechanics to repair and maintain his aircrafts in
the field under combat conditions with only a small set of tools.

In a typical operational scenario, missions are developed on-
shore and implemented as mission files (programs) that are dynam-
ically downloaded onto the glider during a deployment. At sea,
communication with a glider is only possible through a satellite
link while the AUV is at the surface, because radio waves can only
penetrate a few meters into the water. TrilobiteG makes use of the
Dockserver which allows for communication between the glider
and other remote on-shore or at-sea resources. Through the satellite
link, sensing data and glider health information can be uploaded to
the Dockserver, and new mission files and parameters can be down-
loaded to the vehicle. Sensing and status data are used by oceanog-
raphers and vehicle pilots to monitor and direct the mission in real
time. In addition, an automatic pilot (GPILOT) can help monitor
and guide missions, often performing regular and sometimes te-
dious glider and mission control tasks. This frees oceanographers
and pilots to concentrate on mission critical decisions. If necessary,
GPILOT is capable of running a deployment fully automatically.

In the legacy system, programmers write mission files directly,
which can be a rather error prone task. In the TrilobiteG infrastruc-
ture, mission files are generated by the ALGAE compiler. ALGAE

programs are written by oceanographers using services developed,
tested, and implemented by vehicle engineers. The ALGAE com-
piler detects and reports inconsistencies in ALGAE programs. The
compiler generated mission files contain energy optimizations that
exploit the architecture on the glider. For example, if all the re-
quired data processing and computation activities can be done on
the flight controller hardware, the AVBot is disabled, resulting in
significant energy savings. Service implementations may use on-
board and remote resources, which may be selected on demand
if redundant implementations have been specified. For example, a
path planning service may be performed on a remote server with
greater computational capabilities and additional global informa-
tion (e.g., ocean models and current predictions [22, 34]). Alterna-
tively, the computation can be performed on board if communica-
tion is not possible or not desired. These are tradeoff decisions that
the ALGAE programmer can make based on the alternatives that
the service programmer has provided.

The overall programming process is divided into high-level
(ALGAE) and low-level programming tasks. This architectural de-
sign assumes that most changes to a mission and its goals are done
by the oceanographers while monitoring a mission from a land
or sea based mission control center. Mission definitions and mis-
sion changing decisions are made at the higher programming level.
ALGAE programs define a mission as a set of states, with each
state providing a desired system behavior. State transitions indicate
changes in overall system behavior based on a set of user-specified
and service-specified events. ALGAE state transitions are only pos-
sible while the glider is at the surface. Services are assumed to be
thoroughly tested by vehicle engineers before being released for
use by the ALGAE application programmers. Services can be rather
complex and have access to all computing, sensing, communica-
tion, and data processing resources on the vehicle or provided by
any on-shore site. Services, such as thermocline tracking (see Fig-
ure 6), may change the glider behavior while it is submerged and
in fully autonomous mode where no user intervention is possible.
As a key design decision in our system, ALGAE users cannot di-
rectly write programs that change glider behavior while the AUV is
diving. However, such changes can be specified indirectly by using
the pre-defined services. This can be compared to a structured pro-
gramming approach where programmers are prohibited from ex-
plicitly using GOTOs [12]. As mentioned, ALGAE programmers
can change the glider’s behavior only when the vehicle is at the
surface, and only through state transitions that can be partially ver-
ified by the compiler. State transitions are implemented by GPI-
LOT, which can transparently upload new mission files. Although

Figure 2 depicts the overall architecture of TrilobiteG, it does not
show the significant simulation infrastructures that support the pro-
gramming and mission design process at the ALGAE and service
levels.

4.2 ALGAE: First-tier Application Level
An ALGAE program specifies a finite state machine with n states
where each state describes a particular continuous sensing and
glider flight behavior. Events can trigger state transitions while the
glider is at the surface, i.e., events are evaluated each time the
glider resurfaces. For example, a mission may consist of several
phases, with each phase mapping to a separate ALGAE state. A
glider may be tasked to fly to a particular target area. Once the
target area has been reached, additional sensors are activated and
the target area is searched following a specified search flight pattern
(e.g., a lawn-mower pattern [26]). Once the battery energy has
fallen below a safety threshold, the glider aborts the search and
flies to a predefined recovery point. For this example mission, the
programmer would specify an event that defines the arrival in the
target area and an event that defines a low level of remaining battery
energy.

We have chosen a finite state programming model since it is
simple to conceptualize and matches the current practice of AUV
flight operations in both marine science research institutes we have
collaborated with. Most of the challenges with respect to sensing,
computing, and actuation management are encompassed within an
individual state. Each state has to specify where the AUV is plan-
ning to go, how it should fly there, what it is supposed to do during
the flight, and when should a transition to another state occur. Fig-
ure 3 illustrates the different specifications using a simple, single
state mission as an example.

The route statement in Figure 3(a) instructs the vehicle to fly to
a particular waypoint, i.e., a particular location. ALGAE supports
absolute (GPS) and relative location specifications, for instance,
relative to the original deployment location, or a particular flight
direction (north, south, . . .). The graph on the right side of the
figure shows a simulated flight path with the specified waypoint
off the coast of New Jersey.

The profile statement in Figure 3(b) indicates the desired
climb and dive angles, and the depths of the inflection points. In the
example, the glider is tasked to fly between 5 m and 50 m at dive
and climb angles of 26 degrees. The graph shows the simulated
flight path for two dive segments, each lasting approximately one
hour (3600 s).

Sensors and their data acquisition characteristics are listed in the
sensor statement as shown in Figure 3(c). In the example, a Con-
ductivity, Temperature, and Depth (CTD) sensor acquires data con-
tinuously while an Environmental Characterization Optics (ECO-
Puck) sensor is activated only while the glider passes through a
thermocline, which is a layer of water where warm surface water
meets cooler deep-sea water. This behavior is shown in the graph
for the two simulated flight segments. ECO-Puck activations are
shown as red dots on the flight path. In this example, the thermo-
cline is assumed to be at a depth between 20 m and 25 m. The CTD
is always on, so its activation is not explicitly shown in the graph.
Thermocline is a service that has been defined by a second-tier
expert programmer and will be discussed in more detail in Sec-
tion 4.3.

In Figure 3(d), the surface command specifies when the glider
has to resurface, in seconds. State transitions can only occur when
the glider is at the surface, and only to the states listed in the
events construct. The example mission will surface every hour
until the destination waypoint is reached.

ALGAE programs are simple, yet expressive. They enable
oceanographers to reason about their missions, and adapt mission

ALGAE - What state: state_sensing
begin

 route: gotowaypoint(3927.0, -7415.0)
 profile: yo(5, 0.454, 50, -0.454)
 surface: interval : 3600
 sensors: ctd: interval 4 always,
 bb2flsv4: interval 0 thermocline
 events:
 case interval state_sensing,
 case waypoint state_exit

end

39°N

40°N

75°W 74°W 73°W

(a) Where to go?

ALGAE - What state: state_sensing
begin

 route: gotowaypoint(3927.0, -7415.0)
 profile: yo(5, 0.454, 50, -0.454)
 surface: interval : 3600
 sensors: ctd: interval 4 always,
 bb2flsv4: interval 0 thermocline
 events:
 case interval state_sensing,
 case waypoint state_exit

end
0 1000 2000 3000 4000 5000 6000 7000

0ission 7ime (s)

0

10

20

30

40

50

D
ep

th
 (m

)

(b) How to go?

ALGAE - What state: state_sensing
begin

 route: gotowaypoint(3927.0, -7415.0)
 profile: yo(5, 0.454, 50, -0.454)
 surface: interval : 3600
 sensors: ctd: interval 4 always,
 bb2flsv4: interval 0 thermocline
 events:
 case interval state_sensing,
 case waypoint state_exit

end
0 1000 2000 3000 4000 5000 6000 7000

0ission 7ime (s)

0

10

20

30

40

50

D
ep

th
 (m

)
8 10 12 14 16 18 20 22

7emperDture (c)

(c) What to do?

ALGAE - What state: state_sensing
begin

 route: gotowaypoint(3927.0, -7415.0)
 profile: yo(5, 0.454, 50, -0.454)
 surface: interval : 3600
 sensors: ctd: interval 4 always,
 bb2flsv4: interval 0 thermocline
 events:
 case interval state_sensing,
 case waypoint state_exit

end

waypoint

sensing

exit

interval

(d) When to change behaviors?

Figure 3. ALGAE programming abstractions illustrated using a single, simple example mission.

behaviors quickly and safely when needed. Modifying the data ac-
quisition characteristic of a sensor, altering the flight pattern, or
changing the frequency of surfacing may be accomplished with
a single line program modification, often enabled by the use of
particular services. Service definitions are discussed in the follow-
ing section. In addition, the ALGAE programming model allows
compile-time detection of inconsistencies in sensing and flight
specifications. For instance, if a state requires continuous tempera-
ture readings, but the glider is equipped with a flow-through CTD
sensor that does not reliably collect readings during inflections, the
compiler would warn the operator to use a more reliable pumped

CTD sensor instead [2]. Another example is the specification of
different services that have conflicting sensor requirements.

4.3 Second-tier Service Level
The second-tier service level is implemented on top of the existing
hardware and software infrastructure of the target AUV. In the case
of the Slocum Glider, the software infrastructure provided by the
manufacturer consists of a layered control system executing on the
flight controller as shown in Figure 4. Every four seconds, sensing
and actuation activities are selected through these behaviors, where
higher priority behaviors can override activities selected by lower
priority behaviors. This programming process has been shown to

YOYO

CTDCTD

Half YO
Count

Half YO
Count

Temperature
Profile

Temperature
Profile

Thermocline
Detection

Thermocline
Detection

Binary
Trigger

Binary
Trigger SensorSensor

DRIVER
DRIVER

DRIVER
DRIVER

C
C

Glider Run-Time System
Glider Run-Time System

...
dive_to flag

climb_to_flag

...
dive_to_arg1

dive_to_arg2

...

Sensor Array

Linux SBCFlight Controller

yo
yo

sample
sample

gloc
gloc

surface
surface

abend
abend

prep
prep

gloc
gloc

Python
Python

RS-485

Services
Services

Services
Services

Services
Services

libglider
libglider

pyglider
pyglider

Services

Thermocline Tracking Service

Pseudo Services

Primitive Services

New Services

Figure 4. Onboard target system for second tier service programming with a new service definition for thermocline detection. Areas
highlighted in orange indicate the location of services within the architecture.

be rather error prone for specifying glider missions, which was a
key motivation behind the development of TrilobiteG [40]. How-
ever, many-year efforts have gone into the design, implementation
and testing of high priority safety features, which ensure the sur-
vival and recovery of the glider under basic failure and exception
conditions. Such conditions include motor malfunctions, water in
the hull, failure of internal communication links, and dangerously
low battery. Typically, the detection of such a condition prompts
the glider to perform an emergency surfacing (abend), which may
include the ejection of a weight in order to increase its buoy-
ancy. Instead of reimplementing the entire control structure with
its tested and stable safety behaviors, the second-tier service level
of TrilobiteG is part of the layered control system executing at a
lower priority than these basic glider safety behaviors. As it turned
out, this design decision was crucial to gain the trust of pilots and
second-tier expert programmers into TrilobiteG since it kept the
existing safety features in place.

An essential component in the TrilobiteG programming archi-
tecture is the new service programming model. This service layer
provides a development level for advanced vehicle engineers and
programmers who want to extend the vehicle’s functionality and
therefore expand the expressiveness of ALGAE by exposing ser-
vices as new language constructs. The process of designing, imple-
menting, and testing new services is assumed to not be time critical,
i.e., will be done prior to any AUV deployment that will use the new
service. At the second tier programming level, actions or behaviors
are implemented as services to the system. Services may be simple,
for example, by providing state information, such as if the AUV is
commanded to dive or climb. Services may also grow to become
complex by performing data analysis of sensor data that are then
fed to computationally intensive models.

The existing infrastructure on many AUVs already contains the
elements of such a model. In the Slocum Glider, for example, the
number of inflections the vehicle has performed is exposed as a
system variable. This is a simple example of a counting service.
Many such pseudo services are already provided and can be used
by new services created by a second-tier expert programmer. The

driver on the AVBot, shown in Figure 4, speaks the gliderbus
protocol to read and write into the glider’s sensor memory. The
runtime system exposes the glider’s sensor array for use by services
on the AVBot using shared memory, network sockets, or a library.
Typically at some level, a sensor is subscribed to by a service
so that it may receive updates on that sensor from the glider. A
service may also publish updates to the sensor, for example after
performing some type of computation. This is similar to the publish
and subscribe system used by processes in MOOS-IvP [4]. It is
the responsibility of the runtime system and the AVBot driver to
interact with the flight controller to request and update any sensor
data.

New services can be implemented in a variety of programming
languages on the AVBot itself. The current programming architec-
ture supports C, Python, and GLOC, a scripting language that can
be executed on the flight controller. Depending on the complexity
of a given service in terms of memory and computation, it may
be advantageous for the service to be implemented on the flight
controller. Flight controller services have direct access with no la-
tency to flight information, while AVBot and science Persistor ser-
vices may have faster access to acquired sensor data. Finally, these
services may also migrate their execution between the computing
platforms on the vehicle, if necessary, due to resource constraints,
or because it may be beneficial by reducing energy consumption.

Newly created services can interoperate with existing services
provided by the vehicle and services within the new programming
framework. As mentioned earlier, a thermocline is a layer in the
water column where temperatures change drastically with depth,
separating the warmer mixed layer from the deep water layer.
There are several different thermocline detection algorithms that
have been proposed in the literature [7, 31, 38, 40, 43]. As shown
in Figure 4, a thermocline feature detection service has multiple
service dependencies needed to perform its duties. Not only does it
require the temperature profile service to find the thermocline itself,
but it also needs to know the number of half-yos performed in the
segment. This is because the sensor is forced on for the first half yo
of every mission segment as required by the selected thermocline

ALGAE - Compiler

TS Compiler Plugin

YO
YO

CTD
CTD

Half YO
Count

Half YO
Count

Temperature
Profile

Temperature
Profile

Thermocline
Detection

Thermocline
Detection

Binary
Trigger

Binary
Trigger Sensor

Sensor

Thermocline Service (TS)

Sensor Behaviors Compiler Plugin

Sample/Sensor_in Behaviors

mission: thermocline_mission

state: state0

begin

route: heading(0.0)

profile:

yocnt(5, 0.454, 50, -0.454, 6)

surface: interval : 3600

sensors:

ctd: interval 4 always,

bb2flsv4: interval 0 thermocline

events:

case interval exit,

case nopitch exit

end

mission: thermocline_mission

state: state0

begin

route: heading(0.0)

profile:

yocnt(5, 0.454, 50, -0.454, 6)

surface: interval : 3600

sensors:

ctd: interval 4 always,

bb2flsv4: interval 0 thermocline

events:

case interval exit,

case nopitch exit

end

... ...

always/diving
Sensor

Behaviors

thermocline TS

… ...

ALGAE Program

…

…

Figure 5. Compiler infrastructure.

detection algorithm. Redundant services can also be specified to
implement different quality vs. energy consumption tradeoffs. It
will be the responsibility of the higher level programmer or an
automatic strategy to select the service with the desired quality
vs. energy consumption tradeoffs. The idea of providing alternate
mechanisms to produce the same or similar output or functionality
is not new and has been applied in different energy-aware contexts
[3, 25, 28, 36].

4.4 Compiler
The ALGAE compiler translates ALGAE programs into executable
deployments. An executable deployment consists of a set of mis-
sion files, one for each state, and a corresponding state transition
table. State transitions are executed by GPILOT each time the ve-
hicle surfaces and contacts the Dockserver (see Figure 2).

A service writer extends the compiler through compile-time
plugins. The plugins not only specify the name and functionality
of the service, but also may contain code that performs consistency
checks and optimizations at compile time. Figure 5 depicts, in part,
how the ALGAE compiler will generate services for a state speci-
fication. In the case of the CTD sensor specification, the compiler
will lookup the always token and use the sensor translation ta-
ble to determine that the Sensor Behaviors compiler plugin should
be called. These compiler plugins are Python modules that are im-
ported and then called during the compilation to help verify, op-
timize, and generate code to enable or activate the services of the
framework. These plugins, when executed, are provided with the
state specification that will give the plugins the context to perform
optimizations. For example, if two sensors both specify always,
they can be combined under the same vehicle activation flag during
execution.

The thermocline sensor token in Figure 5, for the bb2flsv4
sensor, would also need to be looked up in the translation table. The
thermocline service compiler plugin is then called by the compiler
with the state’s context. This plugin could take into account the de-
pendent CTD sensor and verify that data resolution is sufficient for
the thermocline tracking service to perform its duties. If the reso-
lution is not sufficient, the compiler can generate an error message
or warning. Compiler plugins may also be used to select among re-
dundant services that provide different quality vs. energy tradeoffs
in their service implementation. The specification of redundant ser-
vices in TrilobiteG together with possible selection strategies are
part of ongoing research.

5. TrilobiteG Simulation Environment
For autonomous systems operating in dangerous environments,
simulation is crucial for mission development, planning, real-time
troubleshooting, and pilot training. Programming logic errors, mis-
judgement of resource availabilities and tradeoffs, or wrong reac-
tions to physical conditions, can lead to system failure or even total
system loss. TrilobiteG has a crucial need for simulation at dif-
ferent levels of system granularity that captures vehicle behaviors
within a virtual, but realistic physical environment.

A typical Slocum simulator as provided by the manufacturer is
either a physical glider on a bench top running in simulation mode,
a “Shoebox” simulator, or a “Pocket” simulator. A “Shoebox”
simulator contains much of the electronics of a glider contained in a
shoebox sized container, while the “Pocket” simulator contains the
bare minimum amount of electronics to run the glider’s software.
These simulators run in real-time, so testing long term missions can
be cumbersome, if not infeasible.

The TrilobiteG simulator is a faster-than-real-time, full software
stack simulator for the Slocum Glider. The simulator includes de-
tailed vehicular, environmental, and energy models to determine
the glider’s behavior during mission execution and is capable of
running on commodity hardware. Full software stack simulation of
the Slocum target system is necessary due to the complex interac-
tion among different drivers for sensors, motors and software com-
ponents. These complex software and hardware interactions make
it difficult to design accurate high-level behavioral models of all
system activities.

Since the TrilobiteG simulator is no longer tied to the glider’s
hardware and development stack, it can be easily extended to in-
clude additional features. In particular, one useful extension that we
have added is the ability to run the simulator in a faster-than-real-
time mode. Depending on the specifications of the host computer
running the simulator, we have simulated up to 30 mission hours
in one minute, a three order of magnitude (1800x) speed-up over a
“Pocket” or “Shoebox” simulator. This enables long-term missions
to be easily and quickly tested. Furthermore, we have implemented
a hybrid mode that simulates faster-than-real-time while underwa-
ter, and real-time while at the surface. In this mode of operation,
a glider pilot can conveniently interact with the simulated glider
while at the surface, for example, to change mission parameters
while quickly simulating the underwater flight segment where no
satellite communication is possible.

Using the simulator, we were able to help researchers at IMCS
pinpoint a problem with a glider that was deployed off the coast
of South Africa. The glider was overdue for calling in through its
satellite communication. Within 20 min, we recreated the glider’s
software state and identified a software inconsistency. This incon-
sistency prevented the glider from resurfacing and forced it to fly a
shallow flight path between 5 m and 20 m water depth, causing it
to consume significant battery energy in the process. Furthermore,
we simulated the glider behavior predicting the next two weeks in
a few minutes. We were able to confirm that the glider’s flight path
would not change unless a system exception occurred which would
override the current flight behavior. Indeed, after nearly two weeks,
such an exception occurred, allowing the pilots to reestablish con-
tact with the vehicle and implement a bug fix. Unfortunately, the
high number of inflections had substantially reduced the battery
life, resulting in the need to cut the mission short.

Faster-than-real-time simulation can also be an important tool
for path and resource planning [1, 17, 32]. A search space of
different mission scenarios can be explored in real-time, supporting
mission critical decisions while the glider is at sea. Energy efficient
multi-core systems can run thousands of simulations at the same
time, either remotely, or on battery-operated on-board computing
systems [42].

An important aspect to any AUV deployment is to monitor
and estimate a vehicle’s energy consumption. In earlier work, we
deployed a glider off the coast of New Jersey to measure the power
dissipation of the individual components of the AUV during its
mission [41]. These measurements were used to build TrilobiteG’s
energy models and can be used to estimate the energy expended of
the vehicle by analyzing its log files. Like the glider, our simulator
also generates these log files which can be used by the energy
model. We have also integrated a service into the simulator code
that executes the energy model during flight and presents it as a
glider sensor to facilitate evaluation. These mechanisms are used in
our evaluation to provide a sense of the energy dissipation during
each stage of a mission.

As part of this paper, we have made the simulator publicly avail-
able 3. Users are able to execute ALGAE programs and can down-
load the log files generated by the TrilobiteG infrastructure. This
platform provides a mechanism for users to gain experience on
how various tradeoffs in vehicle behavior and sensing can affect
missions. Furthermore, it will enable a larger research community
to conduct research and perform experiments with AUVs, in par-
ticular with the Slocum Glider.

6. Experimental Results and Evaluation
Thermocline detection and tracking is an important application
that we have explored in previous work [39]. Programming this
application using the legacy programming system is a tedious and
error-prone process due to the complexity of the interactions of
behaviors in the layered-control stack. The manufacturer does not
provide a thermocline detection or tracking behavior.

We have deployed several missions similar in nature to the
sample ALGAE program listed in Figure 3. The flight profile of
such a deployment is show in Figure 6. Like the sample program,
the vehicle is tasked to detect and track a thermocline. When the
thermocline has been established using readings from the CTD
sensor, ECO-Puck sensors are activated to log data only within the
thermocline. The thermocline is represented in Figure 6 by the CTD
readings, in blue, indicating a drastic change in temperature within
a few meters of depth. The activation of the ECO-Puck sensors, in
red, are overlaid on top of the glider’s flight profile, in green.

3 The simulator is available through a web portal at
http://algaesim.cs.rutgers.edu.

0 500 1000 1500 2000 2500 3000 3500
0ission Time (s)

0

10

20

30

40

50

60

D
ep

th
 (m

)

8 10 12 14 16 18 20 22
TemperDture (c)

Figure 6. A Slocum Glider tracking a thermocline on September
27, 2012. The vehicle was tasked to activate a sensor only within
the thermocline.This behavior cannot easily be expressed with the
manufacturer provided programming model.

Sensor Management Energy Recall Precision
Always On 3.7 kJ 1.00 0.08

Thermocline Tracking 1.4 kJ 0.98 0.22

Table 1. Thermocline tracking deployment results.

Unlike the sample program, the mission did not use the go-
towaypoint where specification, but instead was instructed to zero
its fin angle to fly straight ahead. The yo target depth (how) was
100 m instead of 50 m, but the glider never reached this target depth
because the water depth at the deployment location was approxi-
mately 65 m. Finally, the only transition out of the mission was a
surface interval of 45 min that required the vehicle to exit.

In the legacy glider programming framework, sensors are typ-
ically always activated. Continuous sensor use significantly in-
creases the power required by the vehicle, which ultimately affects
its overall flight and sensing endurance. To quantify the impact
of continuous sensor usage, we compare the energy utilization of
the deployed mission to a nearly identical simulated mission. In
the simulated mission the ECO-Puck sensors are always activated,
whereas in the deployed mission they are only activated within
the thermocline. This simulated mission is equivalent to changing
the bb2flsv4 sensor specification from thermocline to always in
Figure 3. The two missions are compared using sensor energy, re-
call, and precision. As we will show, a simple sensor specification
change can lead to dramatic energy savings.

The ECO-Puck sensors equipped on the glider during the de-
ployment have a power dissipation of 1.22 W. For AUVs, making
effective use of such an expensive sensor is of extreme importance.
Thus, the aim of the thermocline tracking and trigger management
approach is to reduce the energy required by the sensors while still
capturing relevant sensor readings. The recall metric is defined as
the proportion of the number of logged readings within the rele-
vant area (thermocline) to the number of readings possible within
the area if given perfect knowledge, for example, by an oracle. The
precision metric is defined as the proportion of relevant readings
recorded to the total number of readings recorded. Informally, this
provides insights into how much relevant sensing information is
missed (false negative) when performing sensor management, and
how much irrelevant information is collect (false positive).

The results of our sensor management comparison of the de-
ployments are shown in Table 1. Applying the thermocline tracking
approach saves more than half the energy while still capturing most
of the data within the area of interest. In addition, the precision sig-

nificantly increases by almost a factor of three. The precision could,
in fact, be improved further if the algorithm was not forced to turn
on the ECO-Puck sensors at the surface and for the first dive. The
decision to force the sensors on is justified by the fact that the ther-
mocline tracking algorithm learns about the temperature profile as
it flies. To ensure that no relevant readings are missed, the sensors
are kept on for the first profile and at the surface until the glider has
some notion of where the thermocline resides in the water column.
Considering that most dive segments in long term deployments are
much longer than the sea-trial we presented, the impact of this pol-
icy on the precision decreases as the dive segments become longer.

In summary, specifying a thermocline triggering strategy in
the existing legacy programming system would have been pro-
hibitively difficult for an oceanographer, pilot, or even a vehicle
engineer. The presented example demonstrates the simplicity by
which TrilobiteG enables users to specify and implement complex
services and is representative of the potential the framework has for
the oceanographic community.

7. Conclusion and Future Work
Programming autonomous systems, such as buoyancy-driven AUVs,
is an extreme challenge due their particular operational character-
istics. AUVs are deployed in hostile environments, operate fully
autonomously for the bulk of their missions, and need to adapt to
changes in physical environments and available resources, particu-
larly battery energy. This often requires making trade-off decisions
in real-time while limited communication with the AUV is possi-
ble. These factors put an extreme burden on programmers who are
often themselves working in stressful environments while piloting
a fleet of vehicles.

This paper introduces TrilobiteG, a two-tier programming ar-
chitecture that consists of a domain-specific language layer for
oceanographers and marine scientists (ALGAE), a lower level ser-
vice definition layer for vehicle engineers, and a set of simulators to
support both programming layers. The design is driven by the need
to provide a safe and practical programming framework that both
oceanographers and vehicle engineers can trust. This means that
existing glider safety features and systems are integrated within the
new architecture. Correspondingly, the language design reflects the
operational constraints of AUV deployments where vehicle com-
munication is only possible during their time at the surface. Other
autonomous systems, such as satellites and robots, have similar
constraints and can benefit from such a programming approach.

The domain-specific language is based on a simple state-based
programming model. Again, state transitions are only possible
while the AUV is at the surface and reachable via satellite com-
munication. Each state specifies a flight route, a flight profile, a
sensor set with possible trade-off specifications, the length of each
flight segment during which the glider is submerged and operat-
ing fully autonomously, and events that will lead to the transition
to other states. The service layer provides more complex system
behaviors which can dynamically change the glider state while
it is submerged and in fully autonomous mode. The safe imple-
mentation of services require an in-depth knowledge of the system
characteristics that only vehicle engineers have. Services are used
at the domain-specific language level to provide more complex
system behaviors, such as adaptive sensing based on thermocline
detection.

The prototype TrilobiteG programming architecture has been
implemented and consists of the ALGAE compiler, an on-shore au-
tomatic pilot and mission monitor, and an on-board runtime envi-
ronment. TrilobiteG has been extensively tested through simula-
tions and multiple deployments in the Atlantic Ocean off the coast
of New Jersey. The programming architecture is able to express
overall system behavior such as thermocline tracking and other be-

haviors that are not supported by the legacy programming environ-
ment. This was accomplished without losing any existing safety
features of the glider, which was one of the major concerns of the
oceanographers, pilots, and vehicle engineers we worked with.

The faster-than-real-time simulator proved to be very useful
for path, resource, and tradeoffs planning, and for real-time trou-
bleshooting. We believe that the ALGAE programming model in
conjunction with the simulation environment is a safe, robust, and
practical architecture that can support programming under extreme
conditions. This is due to its simplicity at the higher level where
real-time decisions have to be made, and its expressiveness at the
lower service level where services are thoroughly tested before be-
ing released for use at the higher level. The design of the TrilobiteG

architecture was based on a seven year collaboration with oceanog-
raphers and AUV engineers at two major marine science research
institutes (IMCS and MBARI), and the experiences we gained with
our own gliders. As part of this paper, we have made our TrilobiteG

system and simulator available through a web interface, allowing a
larger research and educational community to target these impor-
tant systems.

There are many promising directions for future research, in-
cluding compiler optimizations that map computations to different
system components in order to save energy, strategies that trans-
parently map services to on-shore or on-board resources, and pro-
gramming abstractions that allow groups of AUVs to be treated as a
single scientific instrument. The latter goal has become of increas-
ing importance since advanced sensor payloads have become too
large to be supported by only a single vehicle. Coordination among
several autonomous AUVs will benefit from acoustic communica-
tion. We are planning to include different communication services
in our TrilobiteG system that will enable coordinated swarming be-
haviors.

Acknowledgements
This work has been partially funded by NSF grants CSR-CSI
#0720836 and MRI #0821607. Any opinions, findings, and con-
clusions or recommendations expressed in material related to this
project do not necessarily reflect the views of the National Science
Foundation. We would like to thank the oceanographers, pilots, and
glider engineers we have collaborated with for their invaluable in-
put to the TrilobiteG system. In particular, we would like to thank
David Aragon, Tina Haskins, Chip Haldeman, and Oscar Schofield
at IMCS.

References
[1] A. Alvarez, A. Cait, and R. Onken. Evolutionary path planning

for autonomous underwater vehicles in a variable ocean. Oceanic
Engineering, IEEE Journal of, 29(2):418–429, April 2004.

[2] A. Alvarez, R. Stoner, and A. Maguer. Performance of pumped and
un-pumped CTDs in an underwater glider. In OCEANS 2013 IEEE -
San Diego, pages 1–5, 2013.

[3] W. Baek and T. M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In
Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 198–209, 2010.

[4] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard. Nested
autonomy for unmanned marine vehicles with MOOS-IvP. Journal of
Field Robotics, 27(6):834–875, 2010.

[5] R. I. Carnegie Mellon Robotics Academy. RobotC.
http//www.robotc.net.

[6] B. Claus, R. Bachmayer, and C. D. Williams. Development of an aux-
iliary propulsion module for an autonomous underwater glider. In Pro-
ceedings of the Institution of Mechanical Engineers, Part M: Journal
of Engineering for the Maritime Environment, November 2010.

[7] N. Cruz and A. Matos. Adaptive sampling of thermoclines with
autonomous underwater vehicles. In MTS/IEEE OCEANS 2010 -
Seattle, WA, September 2010.

[8] D. Davis. Automated parsing and conversion of vehicle-specific data
into autonomous vehicle control language (avcl) using context-free
grammars and xml data binding. In 14th International Symposium
on Unmanned Untethered Submersible Technology (UUST), Durham,
New Hampshire, August 2005.

[9] D. Davis and D. Brutzman. The autonomous unmanned vehicle work-
bench: Mission planning, mission rehearsal, and mission replay tool
for physics-based x3d visualization. In 14th International Symposium
on Unmanned Untethered Submersible Technology (UUST), Durham,
New Hampshire, August 2005.

[10] P. Dias, S. Fraga, R. Gomes, G. Goncalves, F. Pereira, J. Pinto, and
J. Sousa. Neptus - a framework to support multiple vehicle operation.
In MTS/IEEE Oceans 2005 - Europe, volume 2, pages 963 – 968 Vol.
2, 20-23 2005.

[11] P. Dias, G. Goncalves, R. Gomes, J. Sousa, J. Pinto, and F. Pereira.
Mission planning and specification in the neptus framework. In
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 3220 –3225, 15-19 2006.

[12] E. Dijkstra. Go To statement considered harmful. Communications of
the ACM, 11(3):147 – 148, March 1968.

[13] C. Duarte and B. Werger. Defining a common control language for
multiple autonomous vehicle operation. In OCEANS 2000 MTS/IEEE
Conference and Exhibition, volume 3, pages 1861–1867 vol.3, 2000. .

[14] C. Duarte, G. Martel, E. Eberbach, and C. Buzzell. Talk amongst
yourselves: getting multiple autonomous vehicles to cooperate. In
Autonomous Underwater Vehicles, 2004 IEEE/OES, pages 96–101,
2004.

[15] C. N. Duarte, G. R. Martel, C. Buzzell, D. Crimmins, R. Komerska,
S. Mupparapu, S. Chappell, D. R. Blidberg, and R. Nitzel. A common
control language to support multiple cooperating AUVs. In Proceed-
ings of the 14th International Symposium on Unmanned Untethered
Submersible Technology, 2005.

[16] E. Eberbach, C. Duarte, C. Buzzell, and G. Martel. A portable lan-
guage for control of multiple autonomous vehicles and distributed
problem solving. In Proc. of the 2nd Intern. Conf. on Computational
Intelligence, Robotics and Autonomous Systems CIRAS, volume 3,
pages 15–18, 2003.

[17] M. Eichhorn. Optimal Path Planning for AUVs in Time-Varying
Ocean Flows. In 16th Symposium on Unmanned Untethered Sub-
mersible Technology (UUST09), Durham NH, USA, August 23-26
2009.

[18] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L.
Sabin, J. W. Ballard, and A. M. Chiodi. Seaglider: A long-range
autonomous underwater vehicle for oceanographic research. In IEEE
Journal of Oceanic Engineering, volume 26, October 2001.

[19] S. Glenn, O. Schofield, J. Kohut, J. McDonnell, R. L. D. Seidel,
D. Aragon, T. Haskins, E. Handel, C. Haldeman, I. Heifetz, J. Ker-
foot, E. Lemus, S. Lictenwalner, L. Ojanen, J. Roarty, F. Carvalho,
A. Lopez, A. Martin, C. Jones, D. Webb, J. Miller, M. Lewis,
S. McLean, A. Martins, C. Barrera, A. Ramos, and E. Fanjul. The
trans-atlantic Slocum glider expeditions: A catalyst for undergradu-
ate participation in ocean science and technology. Marine Technology
Society Journal, 45(1):52–67, January/February 2011.

[20] M. Godin, J. Bellingham, B. Kieft, and R. McEwen. Scripting lan-
guage for state configured layered control of the tethys long range au-
tonomous underwater vehicle. In OCEANS 2010, pages 1–7, 2010.

[21] B. W. Hobson, J. G. Bellingham, B. Kieft, R. McEwen, M. Godin, and
Y. Zhang. Tethys-class long range AUVs - extending the endurance of
propeller-driven cruising AUVs from days to weeks. In Proceedings
of IEEE-OES AUV Symposium. Southampton, U.K., September 2012.

[22] HYCOM consortium. Hycom. http://www.hycom.org/.
[23] N. Instruments. Labview Robotics. http//www.ni.com/robotics.
[24] R. J. Komerska and S. G. Chappell. AUV common control language

(CCL)–a proposed standard language and framework for AUV moni-

toring & control layer 1–CCL vocabulary and message set specifica-
tion. 2007.

[25] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel. Meeting
lifetime goals with energy levels. In Proceedings of the 5th inter-
national conference on Embedded networked sensor systems, SenSys
’07, pages 131–144, 2007.

[26] J. Mare. Path following algorithm for minimally specified lawn-
mower type AUV missions. In OCEANS 2010 IEEE - Sydney, 2010.

[27] S. Mupparapu, S. Chappell, R. Komerska, D. Blidberg, R. Nitzel,
C. Benton, D. Popa, and A. Sanderson. Autonomous systems mon-
itoring and control (asmac) - an auv fleet controller. In Autonomous
Underwater Vehicles, 2004 IEEE/OES, pages 119–126, 2004.

[28] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker. Agile application-aware adaptation for mobility. In
Proceedings of the sixteenth ACM symposium on Operating systems
principles, SOSP ’97, pages 276–287, 1997.

[29] Open Source Robotics Foundation. Robot Operating System (ROS).
http//www.ros.org.

[30] Persistor Instruments Inc. Cf1 computer system. Marstons Mills, MA.
http://www.persistor.com.

[31] S. Petillo, A. Balasuriya, and H. Schmidt. Autonomous adaptive envi-
ronmental assessment and feature tracking via autonomous underwa-
ter vehicles. In IEEE OCEANS 2010 - Sydney, Australia, May 2010.

[32] D. Rao and S. B. Williams. Large-scale path planning for underwater
gliders in ocean currents. In Australasian Conference on Robotics and
Automation (ACRA), Sydney, Australia, December 2009.

[33] O. Schofield, J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman,
J. Kerfoot, H. Roarty, C. Jones, D. Webb, and S. Glenn. Slocum
gliders: Robust and ready. Journal of Field Robotics, 24(6):473–485,
2007.

[34] A. Shchepetkin and J. McWilliams. The regional oceanic modeling
system (roms): a split-explicit, free-surface, topography-following-
coordinate oceanic model. In Ocean Modelling, volume 9, pages 347–
404, 2005.

[35] J. Sherman, R. E. Davis, W. Owens, and J. Valdes. The autonomous
underwater glider Spray. In IEEE Journal of Oceanic Engineering,
volume 26, October 2001.

[36] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: a language and runtime system for perpetual sys-
tems. In Proceedings of the 5th international conference on Embedded
networked sensor systems, SenSys ’07, pages 161–174, 2007.

[37] Teledyne Webb Research. Slocum Glider. Falmouth, MA, 2013.
http//www.webbresearch.com/slocum.htm.

[38] D. Wang, P. F. Lermusiaux, P. J. Haley, D. Eickstedt, W. G. Leslie,
and H. Schmidt. Acoustically focused adaptive sampling and on-board
routing for marine rapid environmental assessment. Journal of Marine
Systems, 78(Supplement 1):S393 – S407, 2009.

[39] H. Woithe and U. Kremer. Feature based adaptive energy management
of sensors on autonomous underwater vehicles. Ocean Engineering,
97(3):21 – 29, March 2015.

[40] H. Woithe and U. Kremer. A programming architecture for smart au-
tonomous underwater vehicles. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2009 - St. Louis, MO, Oc-
tober 2009.

[41] H. Woithe, I. Chigirev, D. Aragon, M. Iqbal, Y. Shames, S. Glenn,
O. Schofield, I. Seskar, and U. Kremer. Slocum glider energy measure-
ment and simulation infrastructure. In OCEANS 2010 IEEE - Sydney,
2010.

[42] H. C. Woithe, W. Brozas, C. Wills, B. Pichai, U. Kremer, M. Eich-
horn, and M. Riepen. Enabling computation intensive applications in
battery-operated cyber-physical systems. In MARC Symposium, pages
34–39, July 2012.

[43] Y. Zhang, J. Bellingham, M. Godin, and J. Ryan. Using an autonomous
underwater vehicle to track the thermocline based on peak-gradient
detection. IEEE Journal of Oceanic Engineering, 37(3), July 2012.

